53 research outputs found

    Cortical Mechanisms Of Adaptation In Auditory Processing

    Get PDF
    Adaptation is computational strategy that underlies sensory nervous systems’ ability to accurately encode stimuli in various and dynamic contexts and shapes how animals perceive their environment. Many questions remain concerning how adaptation adjusts to particular stimulus features and its underlying mechanisms. In Chapter 2, we tested how neurons in the primary auditory cortex adapt to changes in stimulus temporal correlation. We used chronically implanted tetrodes to record neuronal spiking in rat primary auditory cortex during exposure to custom made dynamic random chord stimuli exhibiting different levels of temporal correlation. We estimated linear non-linear model for each neuron at each temporal correlation level, finding that neurons compensate for temporal correlation changes through gain-control adaptation. This experiment extends our understanding of how complex stimulus statistics are encoded in the auditory nervous system. In Chapter 3 and 4, we tested how interneurons are involved in adaptation by optogenetically suppressing parvalbumin-positive (PV) and somatostatin-positive (SOM) interneurons during tone train stimuli and using silicon probes to record neuronal spiking in mouse primary auditory cortex. In Chapter 3, we found that inhibition from both PVs and SOMs contributes to stimulus-specific adaptation (SSA) through different mechanisms. SOM inhibition was stimulus-specific, suppressing responses to standard tones more strongly than responses to deviant tones, and increasing with standard tone repetition. PVs amplified SSA because inhibition was similar for standard and deviant tones and PV mediated inhibition was insensitive to tone repetition. PVs and SOMs themselves exhibit SSA, and a Wilson-Cowan dynamic model identified that PVs and SOMs can directly contribute to SSA in pyramidal neurons. In Chapter 4, we tested how SOMs and PVs inhibition is modulated with the dynamics of adaptation and across frequency tuning, during exposure to single frequency tone trains across the neuron’s tuning curve. We found that the magnitude of SOM inhibition correlated with the magnitude of adaptive suppression, while PVs inhibition was largely insensitive to stimulus conditions. Together Chapters 3 and 4 implicate SOM inhibition in actively suppressing responses in a stimulus-specific manner while PV inhibition may passively enhance stimulus-specific suppression. These experiments inform the underlying principles and mechanisms of cortical sensory adaptation

    Complementary Control of Sensory Adaptation by Two Types of Cortical Interneurons

    Get PDF
    Reliably detecting unexpected sounds is important for environmental awareness and survival. By selectively reducing responses to frequently, but not rarely, occurring sounds, auditory cortical neurons are thought to enhance the brain\u27s ability to detect unexpected events through stimulus-specific adaptation (SSA). The majority of neurons in the primary auditory cortex exhibit SSA, yet little is known about the underlying cortical circuits. We found that two types of cortical interneurons differentially amplify SSA in putative excitatory neurons. Parvalbumin-positive interneurons (PVs) amplify SSA by providing non-specific inhibition: optogenetic suppression of PVs led to an equal increase in responses to frequent and rare tones. In contrast, somatostatin-positive interneurons (SOMs) selectively reduce excitatory responses to frequent tones: suppression of SOMs led to an increase in responses to frequent, but not to rare tones. A mutually coupled excitatory-inhibitory network model accounts for distinct mechanisms by which cortical inhibitory neurons enhance the brain\u27s sensitivity to unexpected sounds

    Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins

    Get PDF
    Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81–92), which bound directly to the p53 tetramerization domain, and PKCα(281–295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53

    Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm’s potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Putative role of innexins in neuronal arbor formation

    No full text
    Gap junctions have been implicated in a multitude of developmental phenomena, most recently gaining attention for their central role in neurodevelopment. Here, I explore an unusual function that gap junctions may serve based on investigations of the medicinal leech CNS. A pair of anterior pagoda (AP) neurons, found in 20 segmental ganglia, develops mirrored morphology throughout embryogenesis. Each AP extends secondary neurites which interact with those of their contralateral and ipsilateral segmental homologs. During this 5 to 8 day period, functional gap junctions link these cells cytoplasmically as demonstrated through imaging and dye- and electrical coupling. Normally following this period of gap junction formation, these branches degenerate and recede establishing their adult AP morphology. However, if an AP is ablated, these branches can overtake the vacated territory and persist into adulthood. Indeed, subsequent ablation studies have established that AP homologs normally inhibit each others' neurite growth. What is the molecular nature of homologous inhibition? I propose that innexin gap junctions mediate the inhibitory interaction. Invertebrate gap junctions are composed of hexameric hemichannels of the protein innexin and there are 14 innexin genes found within the leech genome. In this study, I have used single cell RNAi techniques for two innexins, Hm-inx1 and Hm-inx6, in order to functionally remove gap junctions in individual AP neurons. Gap junction knock- down experiments may disrupt AP homolog communication and prevent inhibition. Should this be the case, gap junctions have a novel developmental role; direct cell to cell mediation of an inhibitory neural growth signal

    Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation

    No full text
    Summary: Neuronal stimulus selectivity is shaped by feedforward and recurrent excitatory-inhibitory interactions. In the auditory cortex (AC), parvalbumin- (PV) and somatostatin-positive (SOM) inhibitory interneurons differentially modulate frequency-dependent responses of excitatory neurons. Responsiveness of neurons in the AC to sound is also dependent on stimulus history. We found that the inhibitory effects of SOMs and PVs diverged as a function of adaptation to temporal repetition of tones. Prior to adaptation, suppressing either SOM or PV inhibition drove both increases and decreases in excitatory spiking activity. After adaptation, suppressing SOM activity caused predominantly disinhibitory effects, whereas suppressing PV activity still evoked bi-directional changes. SOM, but not PV-driven inhibition, dynamically modulated frequency tuning with adaptation. Unlike PV-driven inhibition, SOM-driven inhibition elicited gain-like increases in frequency tuning reflective of adaptation. Our findings suggest that distinct cortical interneurons differentially shape tuning to sensory stimuli across the neuronal receptive field, altering frequency selectivity of excitatory neurons during adaptation. : Natan et al. describe how a specific component in the neural circuitry in a key auditory part of the brain helps the auditory system tease apart complex sounds. This happens through adaptation of neuronal responses to temporally repeated sounds. Keywords: auditory cortex, interneurons, cortical processing, inhibition, adaptation, frequency tuning, auditory processing, optogenetics, archaerhodopsi
    • …
    corecore